Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

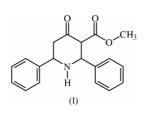
N. Sampath,^a S. Aravindhan,^a M. N. Ponnuswamy^a* and M. Nethaji^b

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India

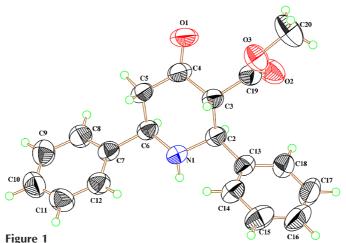
Correspondence e-mail: mnpsy2004@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.045 wR factor = 0.136 Data-to-parameter ratio = 15.5


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Methyl 4-oxo-*r*-2,c-6-diphenylpiperidine-3-carboxylate


The crystal structure of the title compound, $C_{19}H_{19}NO_3$, was determined because it is believed to possess medicinal properties. The piperidine ring assumes a chair conformation. The benzene-ring and methoxycarbonyl substituents are oriented equatorially. Whereas $C-H\cdots O$ intermolecular hydrogen bonds stabilize the crystal packing, the NH group does not form any hydrogen bond.

Comment

Piperidine derivatives are used clinically to prevent postoperative vomiting, to speed up gastric emptying before anaesthesia, to facilitate radiological investigations and to correct a variety of disturbances of gastrointestinal functions (Robinson, 1973). Several 2,6-disubstituted piperidines are found to be useful as tranquilisers and some possess hypotensive activity (Kumar *et al.*, 1998), and a combination of stimulant and depressant effects on the central nervous system (Ganellin & Spickett, 1965), as well as bactericidal, fungicidal and herbicidal activities.

A *ZORTEP* plot (Zsolnai, 1998) of the title molecule, (I), is shown in Fig. 1. The piperidine ring adopts a chair conformation. Both benzene rings are attached to it in equatorial

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

ZORTEP plot (Zsolnai, 1998) of the title molecule showing 50% probability displacement ellipsoids.

Received 6 September 2004 Accepted 15 October 2004 Online 22 October 2004

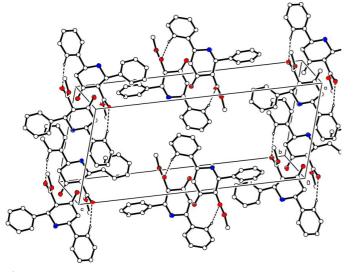


Figure 2

The packing of the title compound. The dashed lines show the hydrogen bonding.

positions. The dihedral angle subtended between the planes of the benzene rings is $32.1 (4)^\circ$. The methoxycarbonyl group is attached to the piperidine ring in an equatorial position.

The packing of the molecules is shown in Fig. 2. $C-H \cdots O$ intermolecular hydrogen bonds stabilize the molecules in the crystal structure. The NH group does not form a hydrogen bond because it is shielded by the two adjacent benzene rings.

Experimental

The title compound was synthesized by a Mannich condensation reaction using benzaldehyde, methyl acetoacetate and ammonium acetate in a 2:1:1 ratio (Noller & Baliah, 1948) in 99% ethyl alcohol solution, refluxed for 1 h and then kept overnight. The colourless crystals obtained were recrystallized from ethanol by slow evaporation.

 $D_x = 1.226 \text{ Mg m}^{-3}$

Cell parameters from 3296

Mo $K\alpha$ radiation

reflections

 $\theta = 1.8 - 26.0^{\circ}$ $\mu = 0.08~\mathrm{mm}^{-1}$

T = 293 (2) K

Block, pale yellow

 $0.41 \times 0.20 \times 0.12 \text{ mm}$

Crystal data

C19H19NO3 $M_r = 309.35$ Monoclinic, $P2_1/c$ a = 9.7563 (13) Åb = 7.710(1) Å c = 22.810(3) Å $\beta = 102.348 \ (4)^{\circ}$ $V = 1676.1 (4) \text{ Å}^3$ Z = 4

Data collection

Siemens SMART CCD area- detector diffractometer	2595 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.077$
ω scans	$\theta_{\rm max} = 26.0^{\circ}$
Absorption correction: none	$h = -12 \rightarrow 12$
12 559 measured reflections	$k = -8 \rightarrow 9$
3296 independent reflections	$l = -28 \rightarrow 28$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0673P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.045$	+ 0.137P]
$wR(F^2) = 0.136$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
3296 reflections	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
213 parameters	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL97
independent and constrained	Extinction coefficient: 0.015 (2)
refinement	

Table 1

Sel	lected	geometric	parameters	(A,	°)	1.
-----	--------	-----------	------------	-----	----	----

C4-O1 C19-O2	1.2030 (17) 1.1965 (17)	C19-O3	1.3321 (17)
$\begin{array}{c} C2-N1-C6-C7\\ C2-N1-C6-C5\\ C6-N1-C2-C13\\ C6-N1-C2-C3\\ N1-C2-C3-C19\\ N1-C2-C3-C4\\ \end{array}$	$\begin{array}{c} 176.64\ (10)\\ -63.66\ (14)\\ -175.53\ (10)\\ 63.25\ (14)\\ -172.71\ (10)\\ -51.02\ (14) \end{array}$	C13-C2-C3-C4C19-C3-C4-C5C2-C3-C4-C5C3-C4-C5-C6N1-C6-C5-C4C7-C6-C5-C4	-171.38 (11) 169.90 (12) 45.82 (16) -47.47 (17) 53.33 (15) 174.75 (11)

Table 2	
Hydrogen-bonding geometry	(Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$\overline{C8\!-\!H8\!\cdot\cdot\cdot\!O2^i}$	0.930	2.49	3.386 (2)	163
Symmetry code: (i)	2 - x, -v, 1 - z			

The H atom bonded to nitrogen was refined isotropically. H atoms bonded to carbon were positioned geometrically and refined using a riding model [C-H = 0.93–0.98 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(C_{methyl})].$

Data collection: SMART (Siemens, 2000); cell refinement: SAINT (Siemens, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1998) and PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

One of the authors (NS) thanks the University Grants Commission (UGC), India, for providing support in the form of a project fellowship.

References

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Ganellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619-625.

- Kumar, M. S., Ponnuswamy, M. N., Ponnuswamy, S., Jeyaraman, R., Paneerselvam, K. & Soriano-Garcia, M. (1998). Acta Cryst. C54, 870-872. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Noller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.
- Robinson, O. P. W. (1973). Post-Grad. Med. J. 49 (suppl.), 9-12.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (1999). PLATON. Utrecht University, The Netherlands.

Zsolnai, L. (1998). ZORTEP. University of Heidelberg, Germany.